
1

The Five ‘D”s of Friction – Final Report

Tom de Geus

April 4, 2024

1 Project goal

Background. When a frictional interface is
driven quasistatically, periods of loading are punc-
tuated by sudden macroscopic slip events. Field
observations on earthquakes and laboratory stud-
ies support that slip nucleates at weak regions of
the interface and then propagates ballistically as
a fracture. Understanding under which conditions
large slip events are triggered and can propagate
is central to tribology, for example to explain the
observed variability of friction coefficients, and for
earthquake science.

Goal. The goal of this project was to understand
which collective microscopic dynamics are respon-
sible for the nucleation of slip events at frictional
interfaces, and develop a theoretical prediction for
the stick-slip amplitude. This goal is achieved, as
summarised below. New open questions are also
identified.

Note to reader. This report summarizes the
main results of the project. It includes citations
to the publications that have resulted from the
project. References to other literature are not in-
cluded, but can be found in the cited publications.

2 State-of-the-art

Friction coefficient. It is well known that the
shear force required to initiate slip is proportional
to the normal force on the object. Since friction
is in addition independent of the nominal contact
area, one should study the shear stress. In all of the
following, we uniquely study the shear stress. We
denote f the remotely applied shear stress (propor-
tional to the force with one needs to pull a sliding
block). For simplicity, we will refer to f as force and
not that our results are on non-dimensional (and
could be converted to desired units if needed).

Continuum models. On a macroscopic level, ex-
periments on a wide variety of materials support
that the frictional response is velocity-weakening.
Many experiments are well described by rate-and-
state friction models. Concrete ideas about the nu-
cleation of slip have been developed by studying the

stability of a perturbation of a stable interface sub-
ject to homogeneous rate-and-state models. These
works predict that a perturbation of extent ℓ is un-
stable if ℓ > ℓc ∼ (f − fc)

−1. However, the micro-
scopic collective dynamics that form the perturba-
tion remain unclear.

Roughness. Zooming in on the interface, it is
well known that any interface is rough. At any in-
stance of time, a fraction of local hills forms a con-
tact that elasticity resists deformation up a certain
threshold to local “failure”.

Disordered models. We can model such phe-
nomenology as an elastic interface driven over a dis-
ordered pinning potential using a weak spring. The
elasticity accounts for the fact that points along the
interface cannot slip independently. The disorder
accounts for the fact that contacts elastically resist
deformation up to a local (‘random’) threshold.

Depinning transition. If overdamped dynamics
are considered, such models undergo a depinning
transition at a critical force fc. At fc, the interface
moves via large reorganizations, called avalanches.
Their size is power law distributed, P (S) ∼ S−τdep .
Moreover, the interface shape is a self-similar shape
with a roughness exponent ζdep. At lower ap-
plied forces (f < fc), the avalanche’s maximal lin-
ear extent diverges approaching the critical point:
ℓdep(f) ∼ |f − fc|−νdep . At higher applied forces
(f > fc) the interface moves at a finite velocity.
The exponents τdep, ζdep, νdep, . . . are now well un-
derstood and related by scaling relations. A practi-
cal note thereby that the roughness exponent ζdep
captures the spatial correlations of slip. This is
a priori unrelated from the surface roughness of
the frictional interface, that is captured the physi-
cal height-height correlations of the interface. Cru-
cially, the depinning transition is a continuous tran-
sition: it does not display stick-slip as observed at
the frictional interface and in earthquakes.

3 Key physics: inertia

Finite mass. The key physics to link the macro-
scopically observed stick-slip (due to velocity-
weakening) to the microscopic collective dynamics
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of the interface, is inertia. At the frictional inter-
face local failure corresponds to the failure of “as-
perities” (hills) of a finite size and mass. Moreover,
the elastic bulk permits elastic wave propagation.

Intuition. The effect of inertia can be understood
as follows. During elastic loading the interface
climbs up energy barriers, but then abruptly slides
downhill once the barrier is overcome. For over-
damped systems (that display the continuous de-
pinning transition), this descent suffices to dissipate
the energy stored during loading, while at lower
damping the inertia may carry the system over sev-
eral successive barriers leading to force overshoots
and oscillations. Such oscillations emit acoustic
waves that facilitate failure of neighbouring regions.
Since their failure also emits waves, there is a feed-
back corresponding to velocity-weakening.

Rheololgy. The remote force f is a combination
of the velocity-weakening of the interface and dissi-
pation. The resulting flow curve is non-monotonic,
with a minimum at f = fmin, as sketched in Fig. 1a.

Stick-slip. If an inertial interface is driven qua-
sistatically through a weak spring1, “stick-slip” oc-
curs as sketched in Fig. 1b. The main question is
now to understand the amplitude of the slip events.
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Figure 1. [Sketch] (a) With inertia the flow curve
(force f vs velocity v) is non-monotonic, with a mini-
mum at f = fmin. (b) A finite hysteresis is predicted
in the thermodynamic limit, such that a system driven
quasistatically through a weak spring displays stick-slip.
Thereby, power law distributed avalanches protect the
interface from building up a load f > fc where it is
unstable. After the instability, the interface unloads
to f = fmin while slipping (see corresponding cycle in
panel a with the same colour coding).

4 Main result

Nucleation. We propose that, in the presence of
disorder, avalanches constitute to the perturbations
that nucleate slip events. In particular, for qua-

1The interface is connected to a loading frame using a
weak spring. Quasistatic loading corresponds to increasing
the position of the driving frame infinitely slowly, such that
energy is minimised at each step. In the context of the fric-
tional interface, the elastic bulk plays the role of the weak
spring, with the effective stiffness proportional 1/H, with H
the height of the block.

sistatic loading using a weak spring, we find crit-
icality at fc, such that the avalanche size, extent,
. . . , are distributed according to power laws. Fur-
thermore, we find that an avalanche is unstable if
its extent ℓ > ℓc ∼ (f −fc)

−ν [1, 2]. In an infinitely
large system, the interface is thus protected from
building up a load f > fc. If an instability occurs,
the system advances by a large reorganization, and
unloads to fmin (the minimum of the flow curve),
resulting in the stick-slip cycle in Fig. 1. Thereby
we numerically find that fc ≈ fmin in very large
systems [1–3]. Crucially, the disorder is responsi-
ble for a distribution of barriers resulting in a self-
affine roughness of the interface characterized by an
exponents ζ, which can be related to criticality to
the non-trivial exponent ν. Thereby, we find that
all exponents and most of their scaling is different
from the depinning transition. Moreover, we find
that the nucleation of slip at a disordered interface
is not captured by continuum theory.

Armouring. In a finite system, the stick-slip am-
plitude is increased due to armouring by inertia
[3, 4]. In particular, we find that if the interface
stops after a system spanning event there are very
few regions with a small activation energy in the
forward direction. Consequently, the number of
avalanche is reduced, such that the interface can
build up a load fs > fc, Figs. 2a and 2b. The
scarcity of avalanches thereby masks the criticality
of the interface, as a bimodal event size distribution
is observed instead, see Fig. 2c, indeed argued to
be the distribution of earthquakes on a single fault.
To study the properties of avalanches in an infinite
system, we trigger avalanches at different forces f
and study their statistics. At fc, their properties
are scale free. At f > fc, avalanches transition to
system spanning events if their extent ℓ > ℓc, see
Fig. 2d. We predict and test fs − fc as a function
of the system size and the exponents τ , ν, and that
of the distribution of activation barriers.

5 The five ‘D”s of friction

Disorder. Disorder changes the distribution of
activation barriers after a system spanning event.
In particular, let P (x) the density of microscopic
regions that fail if the shear load is increased by
some amount x. If P (x) vanishes at small argu-
ment as P (x) ∼ xθ [3], then increasing the load
by ∆f triggers a finite number of avalanches, pro-
portional to (∆f)θ+1. The exponent θ is nonzero
only in the presence of inertia (otherwise θ = 0).
It was found to depend on the statistics of the dis-
order [3]. A single-particle toy model with inertia
and disorder captures the existence of a non-trivial
exponent θ > 0, which we can analytically relate to
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Figure 2. [Sketch] (a-b) In a finite system with dis-
order, avalanches occur at any force f ≥ fmin. They
nucleate slip once their extent ℓ > ℓc ∼ (f − fc)

−ν , typ-
ically at f = fs. (c) The corresponding distribution of
event sizes, P (S), during a quasistatic cycle is bimodal,
see panel c, with avalanches up to a scale Smax(fs), and
system spanning events at a much bigger scale. (d) To
study the properties of avalanches in an infinite system,
and to quantify ℓc, we trigger avalanches at different
forces f . The distribution of their linear extent ℓ is
scale free at fc while at f > fc avalanches transition
to system spanning events if ℓ > ℓc (system spanning
events are excluded from the shown distributions).

the statistics of the disorder [4]. Future work should
clarify quantitative discrepancies between the the-
ory and measurements. Moreover, crucially, future
work should relate the physical surface roughness of
the frictional interface to the statistics of the disor-
der.

Dissipation. In a d dimensional interface embed-
ded in a d + 1 dimensional elastic medium, on top
of damping due to thermalisation, the inertia of the
medium has a stabilization effect known as “radia-
tion damping”. This changes stick-slip if a system
has very weak background damping, for example
because only little energy is lost at the system’s
boundaries. Suppose that the resistance of the pin-
ning potential as a function of velocity is fp(v).
Then, during flow, the remote force f measured at
the system’s boundaries is f = fp(v) + ηv, with η
the background damping, see Fig. 3b. A nucleating
event, whereby part of the interface and bulk are
still static as the rupture invades the interface, is
stabilized by the bulk surrounding it: to increase
the velocity v, the bulk around the rupture has to
be accelerated. The costs of this acceleration lead
to a remote force f = fp(v) + (µ/(2cv))v, with µ
the shear modulus of the bulk, and cs =

√
µ/ρ the

shear wave speed of the bulk, with ρ the mass den-
sity of the bulk, see Fig. 3a. Because the bulk is
accelerated by elastic waves that radiate away from
the interface this effect is commonly referred to as
“radiation damping”.

In the case that η ≪ µ/(2cv) the stick-slip cy-
cle of a thermodynamic system is now as follows.
During nucleation, the net velocity of the inter-
face is zero, and the flow curve is stabilized by
radiation damping with a minimum at fnucl

min , see
Fig. 3a. As above, slip starts if f = fc > fnucl

min .
Once moving, the radiation damping term disap-
pears and the flow curve is lowered with a mini-
mum at fflow

min , see Fig. 3b. The system thus stops
if f = fflow

min < fnucl
min < fc. This corresponds to the

stick-slip cycle shown in Figs. 3c and 3d.

We expect criticality to be observed at f = fc.
As before, we expect an instability if an avalanche’s
extent ℓ > ℓc ∼ (f − fc)

−ν . However, by the same
argument, we expect avalanches at f < fc to be sub-
extensive such that the distribution of their extent
P (ℓ) is cut off at ℓc ∼ (f − fc)

−ν for which we
expect the same exponent to hold. We qualitatively
confirmed this picture using the model of [1, 3], but
lack a quantitative confirmation, which is left for
future work.
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Figure 3. [Sketch] In a d dimensional interface embed-
ded in a d + 1 dimensional elastic medium, on top of
damping due to thermalisation, also the inertia of the
medium has a stabilization effect known as “radiation
damping”. For low background damping, this can lead
to an additional source of hysteresis. (a) During nucle-
ation, the background damping is dominated by radi-
ation damping leading to a non-monotonic flow curve
with a minimum at fnucl

min . (b) Once moving, the ra-
diation damping term disappears and the flow curve
is lowered with a minimum at fflow

min . (c,d) Quasistatic
loading of the interface in the thermodynamic limit re-
sults in stick-slip whereby slip nucleates at fc > fnucl

min

and stops at fflow
min < fnucl

min < fc, as indicated with ar-
rows and corresponding colours.

Drive. Stick-slip is observed when driving with
a weak spring. Making this spring more rigid can
suppress stick-slip if the stiffness is larger than a
critical value. This fact has been used to measure
the non-monotonic rheololgy from Fig. 1a [2].
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Dimensionality. Dimensionality changes the
critical exponents. In particular, we found that
the value of the exponents τ , ν, . . . , are different
for short-range [2] and long-range depinning [1].
Both studies we performed for a d = 1 dimensional
interface. The theoretical prediction was confirmed
for a d = 2 dimensional interface with short-range
depinning [5]. However, due to the computational
costs, a definitive confirmation is left for future
work.

Delay. At a finite temperature, the interface ex-
periences slow creep dynamics. This qualitatively
changes the stick-slip response of a stack of slabs
in contact through dry frictional interfaces driven
in quasistatic shear [6]. A lower driving stiffness
the slabs slip asynchronously and, experimentally,
to the stick-slip amplitude becoming broadly dis-
tributed as the number of layers in the stack in-
creases. We interpret this broadening in light of
the combined effect of complex loading paths due
to the asynchronous slips and creep. Consequently,
the aging rate of the interfaces can be readily ex-
tracted from the stick-slip cycles, and it is found
to be of the same order of magnitude as existing
experimental results on a similar material.

To fundamentally understand the creep dynam-
ics, we first study the response of the interface at
a small force, where the effect of inertia is negligi-
ble, and finite temperature. At small forces, creep
proceeds via thermal avalanches of activated events.
Due to elastic coupling, the thermal activations are
spatially correlated: thermal avalanches occur. We
predict the exponents of thermal avalanches to be
the same exponents as the depinning transition it-
self [7]. With inertia, creep and elastic instabilities
are expected to co-exist at forces of the order of fc,
how this qualitatively and quantitatively changes the
stick-slip response is a fundamental open question.

6 Front dynamics

We numerically confirmed that the front an un-
stable avalanche is fracture-like, and thus well un-
derstood by the theory of fracture. Before the
instability, the front of the avalanche is fractal.
Its dynamics are predicted by a scaling argument
that combines the exponents of the avalanche with
the finite velocity vmin if the interface is driven at
fc ≈ fmin [1].

7 Supporting work

Some of the properties of an elastic interface driven
over a disordered pinning potential are strongly re-
lated to the plasticity of amorphous materials. To
better understand these parallels, joint studies were

performed on: the nucleation of a thin shear band
[8], creep flow [9, 10], and the distribution of acti-
vation barriers [11–13].

In addition, to support the research community
in general, best practices of numerical simulations
were shared [14].
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