Google Scholar ORCiD GitHub

Publications#

  1. E. El Sergany, M. Wyart, and T.W.J. de Geus. Armouring of a frictional interface by mechanical noise. arXiv preprint: 2301.13802, 2023. arXiv:2301.13802, doi:10.48550/arXiv.2301.13802.

  2. S. Poincloux, P.M. Reis, and T.W.J. de Geus. Stick-slip synchronization in stack of elastically coupled frictional interfaces. Phys. Rev. Res., 2023. arXiv:2301.13745, doi:10.48550/arXiv.2301.13745.

  3. T.W.J. de Geus. E-L-M, simple principles to keep data and code alive. Prepint, 2023. doi:10.31222/osf.io/8tzb9.

  4. T.W.J. de Geus and M. Wyart. Scaling theory for the statistics of slip at frictional interfaces. Phys. Rev. E, 106(6):065001, 2022. arXiv:2204.02795, doi:10.1103/PhysRevE.106.065001.

  5. W. Ji, T.W.J. de Geus, E. Agoritsas, and M. Wyart. Mean-field description for the architecture of low-energy excitations in glasses. Phys. Rev. E, 105(4):044601, 2022. arXiv:2106.13153, doi:10.1103/PhysRevE.105.044601.

  6. M. Popović, T.W.J. de Geus, W. Ji, A. Rosso, and M. Wyart. Scaling Description of Creep Flow in Amorphous Solids. Phys. Rev. Lett., 129(20):208001, 2022. arXiv:2111.04061, doi:10.1103/PhysRevLett.129.208001.

  7. M. Popović, T.W.J. de Geus, W. Ji, and M. Wyart. Thermally activated flow in models of amorphous solids. Phys. Rev. E, 104(2):025010, 2021. arXiv:2009.04963, doi:10.1103/PhysRevE.104.025010.

  8. J. Vondřejc and T.W.J. de Geus. Energy-based comparison between the Fourier–Galerkin method and the finite element method. J. Comput. Appl. Math., 374:112585, 2020. arXiv:1709.08477, doi:10.1016/j.cam.2019.112585.

  9. W. Ji, T.W.J. de Geus, M. Popović, E. Agoritsas, and M. Wyart. Thermal origin of quasilocalized excitations in glasses. Phys. Rev. E, 102(6):062110, 2020. arXiv:1912.10537, doi:10.1103/PhysRevE.102.062110.

  10. J.C. Volmer, T.W.J. de Geus, and R.H.J. Peerlings. Improving the initial guess for the Newton-Raphson protocol in time-dependent simulations. J. Comput. Phys., 420:109721, 2020. arXiv:1912.12140, doi:10.1016/j.jcp.2020.109721.

  11. T.W.J. de Geus, M. Popović, W. Ji, A. Rosso, and M. Wyart. How collective asperity detachments nucleate slip at frictional interfaces. Proc. Natl. Acad. Sci., 116(48):23977–23983, 2019. arXiv:1904.07635, doi:10.1073/pnas.1906551116.

  12. W. Ji, M. Popović, T.W.J. de Geus, E. Lerner, and M. Wyart. Theory for the density of interacting quasilocalized modes in amorphous solids. Phys. Rev. E, 99(2):023003, 2019. arXiv:1806.01561, doi:10.1103/PhysRevE.99.023003.

  13. M. Popović, T.W.J. de Geus, and M. Wyart. Elastoplastic description of sudden failure in athermal amorphous materials during quasistatic loading. Phys. Rev. E, 98(4):040901, 2018. arXiv:1803.11504, doi:10.1103/PhysRevE.98.040901.

  14. T.W.J. de Geus, R.H.J. Peerlings, and M.G.D. Geers. Fracture in multi-phase materials: Why some microstructures are more critical than others. Eng. Fract. Mech., 169:354–370, 2017. arXiv:1603.08910, doi:10.1016/j.engfracmech.2016.08.009.

  15. J. Zeman, T.W.J. de Geus, J. Vondřejc, R.H.J. Peerlings, and M.G.D. Geers. A finite element perspective on nonlinear FFT-based micromechanical simulations. Int. J. Numer. Methods Eng., 111(10):903–926, 2017. arXiv:1601.05970, doi:10.1002/nme.5481.

  16. T.W.J. de Geus, J. Vondřejc, J. Zeman, R.H.J. Peerlings, and M.G.D. Geers. Finite strain FFT-based non-linear solvers made simple. Comput. Methods Appl. Mech. Eng., 318:412–430, 2017. arXiv:1603.08893, doi:10.1016/j.cma.2016.12.032.

  17. T.W.J. de Geus, M. Cottura, B. Appolaire, R.H.J. Peerlings, and M.G.D. Geers. Fracture initiation in multi-phase materials: A systematic three-dimensional approach using a FFT-based solver. Mech. Mater., 97:199–211, 2016. arXiv:1604.03817, doi:10.1016/j.mechmat.2016.02.006.

  18. T.W.J. de Geus, R.H.J. Peerlings, and M.G.D. Geers. Competing damage mechanisms in a two-phase microstructure: How microstructure and loading conditions determine the onset of fracture. Int. J. Solids Struct., 97–98:687–698, 2016. arXiv:1603.05841, doi:10.1016/j.ijsolstr.2016.03.029.

  19. T.W.J. de Geus, C. Du, J.P.M. Hoefnagels, R.H.J. Peerlings, and M.G.D. Geers. Systematic and objective identification of the microstructure around damage directly from images. Scr. Mater., 113:101–105, 2016. arXiv:1604.03814, doi:10.1016/j.scriptamat.2015.10.007.

  20. T.W.J. de Geus, F. Maresca, R.H.J. Peerlings, and M.G.D. Geers. Microscopic plasticity and damage in two-phase steels: On the competing role of crystallography and phase contrast. Mech. Mater., 101:147–159, 2016. arXiv:1603.05847, doi:10.1016/j.mechmat.2016.07.014.

  21. J. van Beeck, F. Maresca, T.W.J. de Geus, P.J.G. Schreurs, and M.G.D. Geers. Predicting deformation-induced polymer–steel interface roughening and failure. Eur. J. Mech. - ASolids, 55:1–11, 2016. doi:10.1016/j.euromechsol.2015.08.002.

  22. T.W.J. de Geus, J.E.P. van Duuren, R.H.J. Peerlings, and M.G.D. Geers. Fracture initiation in multi-phase materials: A statistical characterization of microstructural damage sites. Mater. Sci. Eng. A, 673:551–556, 2016. arXiv:1603.08898, doi:10.1016/j.msea.2016.06.082.

  23. T.W.J. de Geus, R.H.J. Peerlings, and M.G.D. Geers. Microstructural modeling of ductile fracture initiation in multi-phase materials. Eng. Fract. Mech., 147:318–330, 2015. arXiv:1604.03811, doi:10.1016/j.engfracmech.2015.04.010.

  24. T.W.J. de Geus, R.H.J. Peerlings, and M.G.D. Geers. Microstructural topology effects on the onset of ductile failure in multi-phase materials - A systematic computational approach. Int. J. Solids Struct., 67–68:326–339, 2015. arXiv:1604.02858, doi:10.1016/j.ijsolstr.2015.04.035.

  25. T.W.J. de Geus, R.H.J. Peerlings, and M.G.D. Geers. Topology and Morphology Influences on the Onset of Ductile Failure in a Two-phase Microstructure. Procedia Mater. Sci., 3:598–603, 2014. arXiv:1604.03258, doi:10.1016/j.mspro.2014.06.099.

  26. T.W.J. de Geus, R.H.J. Peerlings, and C.B. Hirschberger. An analysis of the pile-up of infinite periodic walls of edge dislocations. Mech. Res. Commun., 54:7–13, 2013. arXiv:1604.02848, doi:10.1016/j.mechrescom.2013.08.010.